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1 Background

Planning and monitoring occur in a wide range of contexts, from small-scale cor-
porate purchasing efforts to major civil engineering projects. Planning and mon-
itoring are also complex and difficult, requiring us to anticipate possible future
situations, identify goals to be achieved, identify sequences of actions that might
be attempted in particular situations to accomplish these goals, anticipate pos-
sible consequences and interactions for successfully and unsuccessfully completed
actions, select particular sequences of actions to be performed, recognize occur-
rences of events as they transpire, identify discrepancies between planned and
observed events, and more. ‘ 4 -

Given the current state of computer technology, only some of these subtasks
can be adequately performed on the computer. In general, those subtasks having
to do with exhaustive scanning and testing of alternatives appear to be well suited
to performance by computer, while those subtasks having to do with insight and
judgment appear to be best handled by humans.

Two general approaches have been taken in combining human and computer ef-
fort toward the tasks of planning and monitoring. The first approach issues largely
from the artificial intelligence community and is based on symbolic or sometimes
numerical computer representation of relevant knowledge from the domain in which
planning and monitoring is to be performed. Examples of this approach include
work in the areas of planning, monitoring, diagnosis and reasoning [11]. In this
approach, the computer assumes the burden of responsibility for carrying out the
various subtasks of planning and monitoring, with attendant humans contributing
more or less peripherally by supplying definitional and factual knowledge and by
specifying goals to be accomplished.

The second approach issues largely from the management science community
and is based on a more coarse-granularity computer representation of various prop-
erties and relationships existing between the events in a plan, with the events
themselves specified in a human- understandable form as text strings describing
their nature. Examples of this approach include computerized tools based on the
use of GANTT charts and PERT charts [4, 8, 9]. In this approach, humans assume
the burden of responsibility for carrying out the various subtasks of planning and
monitoring, with attendant computer processing playing a more or less peripheral
role in performing such tasks as scheduling the execution of previously-planned
actions in light of applicable resource constraints, computing critical paths for the
completion of various actions, recording action completion times, and temporally
shifting actions in response to delayed or early completion of other actions.

Both of these approaches fail to fully utilize one or other of the participants:
human or computer. A preferable approach would be to construct a highly inter-
active system that allows these participants to contribute each according to their
relative strengths, exchanging partial results as they go. Facilitating such interac-




tion is in part a representational problem: computer-oriented representations (e.g.,
the symbolic or numerical representations of the first approach) are difficult for hu-
mans to use, and human-oriented representations (e.g., the textual representations
of the second approach) are difficult for computers to use.

A more recent approach to planning and monitoring offered by the artificial
intelligence community is that of “mixed-initiative planning,” in which a com-
puter and human participant interact via manipulation of graphical diagrams,
menu-oriented commands or an exchange of natural language utterances [6, 3, 12].
While these approaches do offer a degree of interactivity between the computer
and human participants, the underlying symbolic representations still hinder hu-
man input and interaction at the more detailed task level of forming expectations
about the desirability or likelihood of occurrence for particular events in particular
circumstances.

Recent approaches from the management science community also support a
degree of interaction between human and computer participants. Work in decision
support systems (e.g., see [4]), including work in data warehousing and database
mining, provides for such interaction by exploiting the computer manipulability
and reasonable human understandability of relational databases (see [5]). However,
these approaches typically do not encode sufficient background knowledge and
detail in the modeling of events as to support extensive computer reasoning and
interaction about event occurrences.

One representation that offers promise as a foundation for the design of in-
teractive planning and monitoring systems. is the transition space representation
(1, 2]. This representation combines two important ingredients. First, it captures
detailed specifications of what happens during the temporal unfolding of particular
events. Thus, computer processing can be used to test particular specifications of
events for consistency with the specifications of particular situations or other par-
ticular events. Second, individual assertions in the representation can be expressed
in simple, stylized English. Thus, humans can easily understand the represented
information, examine its role in particular computer-generated conclusions, and
steer the course of computer processing. .

The split-confirmation approach presented in this paper takes advantage of the
computer manipulability and human understandability of an underlying represen-.
tation such as the transition space representation. In this approach, either partici-
pant may assume the responsibility of vouching for the likelihood or desirability of
particular portions of observed or anticipated events considered during planning
and monitoring. The partitioning of duties is determined by the human partici-
pant, based on his or her knowledge of the surrounding context in which particular
event occurrences fit into the planning and monitoring process. Furthermore, as
this context may change during planning and monitoring, the partitioning of duties
set by the human participant may require modification at any time.



The next two sections present the split confirmation technique and the im-
plemented IMPACT system in overview, focusing on capabilities enabled by each.
Following these two sections, the next two sections describe the approach in greater
detail, focusing on the underlying knowledge representation framework used in IM-
PACT and the split- confirmation algorithm used in IMPACT. The paper concludes
with a brief discussion of current status and future work.

2 Overview of the Split-Confirmation Technique

Central to planning and monitoring is the idea of forming expectations about the.
occurrence of particular types of events in particular circumstances. The circum-
stances may be past, present or future, and the events themselves may be actions
performed by those doing the planning, actions performed by others, and other
events occurring independently or as a consequent or antecedent of other expected
events. Typically, the formation of such expectations proceeds from postulating -
the occurrence of a particular type of event to determining suitable participants for
that event occurrence. This.can be abstracted to an operation of instantiating—
that is, finding suitable values for variables occurring within—an event ” pattern”
in the context of a repository of static facts and other event occurrences.

As a simple example, suppose that the specification of such an event pattern
includes information on what happens during various stages of the temporal un-
folding of that event—assertions such as:

o Between “1998 01/01” and “1998 02/01”, “The AEC341 Frame Buffer/Display”
BECOMES manufactured at “a facility”, and

e Between “1998 02/01” and “1998 03/01”, the utilization of “a group of work-
ers” INCREASES.

The process of instantiating that event pattern in the context of static facts
and other event occurrences will produce an enumeration of acceptable values
for variables such as “a facility” and “a group of workers”—values such as “The
Denver Facility” and “Denver Testing Group #3”. If the instantiation process
yields no such values, this can be taken to imply that the event type in question
cannot occur in the specified circumstances. If more than one acceptable value is
identified for any variable, then this can be taken to imply that more than a single
variation of the event type may be possible in the specified circumstances. Also,
as a degenerative case, if there are no variables within the event pattern, then such
an instantiation process can serve simply as a compatibility check, to test whether
that particular event instance can or cannot occur in the specified circumstances.

However, computer and human participants in the planning and monitoring
process may contribute in largely different ways to the instantiation process. While
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it is natural for the computer participant to maintain the integrity of its knowledge

base,

or “repository,” by continually testing for conflicts between newly considered

events and previously accepted facts, changes and events, the act of ensuring an
absence of conflicts for a newly considered event leaves open the question of whether
or not there exists any justification for believing the facts and changes specified by
that event. With respect to determining justification for these facts and changes, a
natural partitioning of duties arises between the computer and human participants,
such that they each vouch for a different temporal portion of the event. This
partitioning of duties is illustrated below in the context of several types of events:

For a “reported” event—that is, an event whose occurrence the human takes
on faith from a reliable external source—the computer participant will simply
accept the event’s circumstances in their entirety on the basis of the human’s
voucher for the event.

For a “planned” event—that is, an event for which some person or entity
will see to it that the event occurs if its initial preconditions are met—the
computer may check to see if there is independent justification for believing
that the event’s initial conditions will prevail, while it must accept on faith
the human’s voucher that the remainder of the event will be executed in such
a case.

For an “enabling” event—that is, an event for which some entity or process
known to the human will ensure that a certain set of facts and changes will
occur, leading up to a specified final set of conditions—the computer can
test to see whether there is independent justification for believing that the
final conditions do indeed hold, while it must accept on faith the human’s
voucher that the initial portion of the event occurs as specified.

For a “consequent” event—that is, an event for which we have confidence
that if an initial temporal portion of the event occurs (more than just the
initial conditions), then the remainder of the event will occur—the computer
can test to see if there is independent justification for believing that the
initial portion of the event occurs, while it must accept on faith the human’s
voucher that the remainder of the event will occur.

For an “antecedent” event—that is, an event for which we have confidence
that if a final temporal portion of the event occurs, then the initial portion
of the event has occurred before that—the computer can test to see if there
is independent justification for believing that the final portion of the event
has occurred, while it must accept on faith the human’s voucher that the
initial portion of the event has occurred.



e Finally, for an “inferred” event—that is, an event for which we cannot assume
any part of its occurrence based on other information available to us—the
computer must find independent justification for all temporal portions of the
event, as the human has not offered a voucher for any portion of the event’s
occurrence.

It should be noted that humans are the best judges of which classifications to
assign to particular events. Such judgments depend on knowledge of the reliability
of external information sources, commitments of various parties, and likelihoods
of particular occurrences continuing from or preceding particular sets of circum-
stances.

In all of the above cases, the partitioning of duties for finding independent jus-
tification for circumstances falls along temporal lines, with the computer vouching
for one portion of an event’s occurrence, while the human vouches for the remain-
ing portion of the event’s occurrence. One might imagine a temporal “dividing
line” drawn at a human-designated point between the starting and ending time
points for an event, such that the computer must vouch for that portion of the
event falling on one side of the dividing line, and the human must vouch for that
portion falling on the other side of the dividing line.

Of course, one might imagine dividing up events according to other criteria,
too. For example, the partitioning of responsibility could be set according to

where particular components of information might be found. In this paper, the
" partitioning is always along temporal lines; however, the extension of the split-
confirmation technique to such other criteria follows in a fairly direct manner.

The following paragraphs describe a particular variant of split- confirmation
that has been found to be both effective and conceptually simple. In this vari-
ant, the computer vouches for its portion of a considered event by first applying
two types of contextual assumptions, described below, to estimate what might
otherwise be expected to occur over the specified time interval, then applying con-
straint propagation (see, for example, [13]) to determine sets of acceptable values
for variables appearing within the event pattern. The reader might note that other
approaches could also be acceptably used by the computer participant to complete
its reasoning duties, still within the spirit of the general split-confirmation method.
Examples of such other approaches include generate-and-test, the use of heuristic
evaluation functions, case- based or analogical reasoning, and the application of
forward-chaining rule sets.

The two types of contextual assumptions applied by the computer participant
are as follows:

e a persistence assumption—that is, an assumption that circumstances per-
taining to particular points in time continue to hold at future time points,
up to the point where different circumstances are known to prevail (see, for
example, [7]), and



e a closed-world assumption—that is, an assumption that all attributes and
relationships are “absent” or “false” for all objects not explicitly known to
possess those ‘attributes and relationships (see, for example, [10]).

For reported events, these assumptions are not applied, as the computer has
not been directed to vouch for any portion of the event’s occurrence. For planned,
consequent and inferred events, the assumptions are applied in tandem from all
points prior to the event pattern’s period of occurrence up through some initial
portion of the event pattern’s period of occurrence. For enabling and antecedent
events, the assumptions are applied in the reverse direction, in tandem from all
points after the event pattern’s period of occurrence back through some final por-
tion of the event pattern’s period of occurrence.

In all cases, the persistence and closed-world assumptions have the effect of aug-
menting the surrounding repository of static facts and other event occurrences to
include new assertions that may possibly conflict with particular instantiations—
particular sets of variable assignments—for the target event pattern, thereby re-
stricting the range of acceptable instantiations for that event pattern. However,
the extent to which the contextual assumptions provide additional constraint to
the instantiation process is limited by the fact that these assumptions provide only
default information that can be overridden by other, explicitly posted assertions in
the repository. The net effect of applying the contextual assumptions, then, is to
force acceptance of only those instantiations of a target event pattern whose non-
default facts and changes in the period of coverage of the assumptions meet with
independent substantiation in the form of explicit repository assertions. This is
precisely what is needed to support differential treatment of the six classifications
of events as listed above. In particular:

e For a reported event, the contextual assumptions are not applied. Thus, con-
straint propagation ensures merely that instantiation of the reported event
generates no direct conflicts with other facts and changes known to have
occurred at the same time.

e For a planned event, the contextual assumptions are applied from prior time
points up to the starting time point for the event. Thus, constraint propaga-
tion ensures that, in addition, all non-default initial conditions of the event
instance are independently substantiated in the repository.

e For an enabling event, the contextual assumptions are applied from successive
time points back to the ending time point for the event. Thus, constraint
propagation ensures that, in addition to the absence of direct conflicts with
repository information, all non-default final conditions of the event instance
are independently substantiated in the repository.



e For a consequent event, the contextual assumptions are applied from prior
time points up through the end of the first time interval of the event. Thus,
constraint propagation ensures that not only non- default initial conditions,
but also all changes occurring within the initial time interval of the event
instance are independently substantiated by assertions in the repository.

e For an antecedent event, the contextual assumptions are applied from succes-
sive time points back to the beginning of the last time interval of the event.
Thus, constraint propagation ensures that not only non-default final condi-
tions, but also all changes occurring within the final time interval of the event
instance are independently substantiated by assertions in the repository. -

e Finally, for an inferred event, the contextual assumptions are applied from
prior time points through the end of the entire event. Thus, constraint prop-
agation ensures that non-default initial conditions plus all changes occurring
throughout the event instance are independently substantiated by assertions
in the repository.

In addition to controlling the degree to which the contextual assumptions are
applied during constraint propagation, the human participant interacts with the
computer participant in three supporting ways—in all, yielding a considerable
degree of interactivity between the human and computer participants. First, the
human participant initiates the constraint propagation process itself by requesting
processing steps such as the verification of externally supplied information, the
enumeration of possible effects of a particular event, and so forth. Second, the
human participant can explore different hypothetical scenarios by alternatively
“activating” and “deactivating” particular events with respect to the constraint
propagation process. Third, in those cases where constraint propagation comes to
a halt with more than a single value remaining for one or more of the variables,
the human participant may explore the range of alternate instantiations for the
- event by choosing specific values for specific variables, then allowing the constraint
propagation process to continue.

In the context of planning and monitoring, it is indeed a frequent occurrence
for planned, enabling, consequent and antecedent events to admit multiple possible
instantiations. Thus, quite often, the constraint propagation process will come to a
halt with more than a single value remaining for one or more of an event pattern’s
variables, and the human participant will be needed to steer the processing toward
particular instantiations and away from others, based on the human participant’s
knowledge, experience and insight. Consequently, it is implementationally advan-
tageous to employ a faster, less complete method for constraint propagation than,
for example, the Waltz method, thereby minimizing the amount of time spent on
alternative instantiations that may never be explored by the human participant.
This streamlined method simply enumerates for each variable those values that
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appear in at least one acceptable complete instantiation for each of the assertions
within the specification of the temporal unfolding of the event pattern. The cur-
rent invention also generalizes to use with the Waltz method (see, for example,
[13]) or any other method for constraint propagation, if this is so desired.

3 Overview of the IMPACT System

The split-confirmation technique is embodied in the design and functionality of
IMPACT, a domain-independent, interactive planning and monitoring system that
enables its users to incrementally develop, modify and track the execution of plans
on the basis of real-world observables. IMPACT comprises about 20,000 lines of
code written in C and uses an X/Motif interface and stylized English to interact
with its users. Figure 1 presents a sample screen shot of the IMPACT system.

i—(Pr—t

1—(D—=1—{D—I

(—(D—1—()—I

1=thH—1—¢(hH—I

Figure 1: A screen shot of the IMPACT system displaying four events—a proposed
action and three anticipated consequences—occurring as part of a scenario labeled

“Scenario #1”.

Abstractly, IMPACT behaves much like a “spreadsheet for events.” Whereas
a standard spreadsheet allows users to gather numerical information, reconcile ac-
counts received from different sources, graphically organize the information for
inspection, propagate numerical constraints. and examine alternative scenarios by
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inserting hypothetical values, IMPACT allows users to gather human- or machine-
generated field reports regarding observed activities, reconcile reports from differ-
ent sources, graphically organize this event-oriented information, propagate con-
straints among the represented events, and perform “what-if” reasoning by explor-
ing possible consequences of hypothetical or planned events.

At present, IMPACT handles reported, planned, consequent and inferred events.
Current plans call for enabling and antecedent events to be included in the near
future.

Figure 2 presents a block diagram of the IMPACT system. The IMPACT sys-
tem contains three main components: an interface component that communicates
with humans and data files, a reasoning engine that executes the split-confirmation
algorithm, and a repository of information.

Interface Reasoning Engine
! Consistency Testing of
Graphical | Checking Preconditions
Humans Interface
|
I Causal Event
: i Prediction Recognition
\ Stylized ‘
Language
/ Interface
Repository
! Event Event
Data ! Patterns . Instances
. Symbolic
Files Interface |
! Background Assertions i

Figure 2: A block diagram of the IMPACT system, indicating interfaces to humans
and data files, functional capabilities, and maintained information types.

The repository contains three varieties of information: (1) background asser-
tions, which are individual statements of facts or changes, (2) event instances,
which are sets of assertions that collectively describe what happens to selected
properties of participating objects over particular intervals of time, and (3) event
patterns, which are like event instances, except that their assertions may contain
variables in place of one or more time points or participating objects.



IMPACT can perform four principal reasoning operations, including verifying
that reported events are consistent with other known occurrences, checking pre-
conditions of planned events, performing causal prediction and explanation, and
recognizing occurrences of events from low-level change information. Supporting
these operations is a single underlying technique in which IMPACT and a human
operator interactively instantiate event patterns by replacing their variables with
constants, thus producing new event instances.

Within the process of event pattern instantiation, the task of the reasoning
engine is to characterize the set of suitable values that might be used in place
of each variable within an event pattern, such that the event pattern remains
consistent with a currently “active” subset of the event instances and background
assertions. Event pattern instantiation is carried out through an iterative process
in which the reasoning engine is engaged repeatedly on the assertions of the event
pattern, interspersed with possible guidance from the human operator in the form
of specific, chosen values for particular variables.

The following paragraphs describe capabilities of the IMPACT system that
are directly attributable to the split-confirmation technique. Given a surrounding
repository of facts and events that constitute a particular set of circumstances, a
core set of supported capabilities is as follows:

e IMPACT can identify which of many conceivable events might account for a
given change and be consistent with the repository.

e IMPACT and a human user can interactively explore the range of specific
instantiations of an event that are consistent with the repository.

e IMPACT can verify that specific, observed facts and events are consistent |
with the repository.

e IMPACT can identify which of many conceivable actions can be taken.

e IMPACT and a human user can interactively explore the range of specific
instantiations of an action that can be taken.

e IMPACT can verify that a particular intended action or sequence of actions
is possible.

e IMPACT can identify which of many conceivable cause-effect occurrences
can take place.

e IMPACT and a human user can interactively explore the range of specific
instantiations of a possible cause-effect occurrence.

e IMPACT can verify that a particular cause-effect occurrence can happen.
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e IMPACT can identify which of many conceivable events has occurred on the
basis of what is known in the repository.

e IMPACT and a human user can interactively explore the range of specific
instantiations of an event that have occurred.

e IMPACT can verify that a particular event has occurred.

In addition, a human user of IMPACT can perform a number of useful opera-
tions by requesting a reclassification of particular events in IMPACT’s repository.
Such reclassifications take particular advantage of human abilities to provide in-
sight and judgment in determining the appropriate context for processing particu-
lar components of information in light of evolving external circumstances and the
progression of activity in the planning and monitoring process:

e A human user can request that an intended goal event be initially classified
as “reported” so that IMPACT may verify that it does not conflict with other
expected occurrences. Later, the user can request a reclassification of this
event as “consequent” or “inferred” so that IMPACT may verify that the
event follows from planned activity or is otherwise directly substantiated by
observed activity.

e A human user can request that a “reported” event be reclassified as “planned”
so that IMPACT may determine whether or not the event could conceivably
have been carried out intentionally by some party, and if so, which prior
events were responsible for ensuring that the initial conditions of the event
were established.

e A human user can request that a “reported” event be reclassified as “con-
_sequent” so that IMPACT may determine whether or not the event could
conceivably have occurred as an effect of one or more other events. In this
manner, explanations for events can be constructed, possibly extending to
entire sequences of events.

e A human user can request that a “reported” event be reclassified as “conse-
quent” or “inferred” if the human has lost confidence in the external source
of information for that event. IMPACT will then accept the event into the
repository only when it has established that the event could be anticipated
from other known occurrences or that it is directly known to have occurred
on the basis of other known occurrences.

¢ A human user can request that a “planned” event be reclassified as “inferred”
if the human has lost confidence that a responsible party will ensure that the
event will occur if its initial conditions are met or simply wishes to have
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an after-the-fact confirmation of the occurrence of the event. IMPACT will
then accept the event into the repository only when it can substantiate all
components of the event’s occurrence from other known occurrences.

¢ A human user can request that a “consequent” event be reclassified as “in-
ferred” if the human feels that the event is an unlikely occurrence given the
occurrence of the initial portion of that event or wishes to have an after-the-
fact confirmation of the occurrence of the event. IMPACT will then accept
the event into the repository only when it can substantiate the remaining .
components of the event’s occurrence.

e A human user can request that an “inferred” event be reclassified as “conse-
quent” or “planned” if the human has independent knowledge that the event
is a consequence of other events or an action carried out by some party. Such
action may allow other events to be removed from the repository without af-
fecting the status of the event in question. :

e A human user can request that an “inferred,” “consequent” or “planned”
event be reclassified as “reported” if the human has independent knowledge
that the event has been observed to have occurred. Such action may allow
other events to be removed from the repository without affecting the status
of the event in question.

e A human user can request that an observed event with one or more variables
in its description be initially classified as “consequent” or “planned,” so that
the added contextual constraints provided by these classifications may help
in determining suitable values for the variables. Later, if the human user
feels that no other instantiation could reasonably account for the observed
event, the user can request that the generated event instance be reclassified
as “reported.”

Taken together, these capabilities enable the human and computer participants
to interactively engage in a wide range of subtasks to the planning and monitor-
ing process, including: projecting future circumstances, setting goals, identifying

- alternative actions, exploring possible effects of those actions, comparing alterna-

tive plans, merging independently developed plans, accommodating information
regarding recent occurrences, identifying discrepancies between planned and ob-
served occurrences, and developing updated plans to accommodate unexpected
occurrences. Computer processing is brought to bear in the advantageous role of
exhaustively scanning and testing data representations. In turn, human effort is
brought to bear in the advantageous role of providing insight and judgment, not
only in selecting events for consideration in various capacities, but also in control-
ling the reclassification of these events in light of evolving external circumstances
and the progression of activity in the planning and monitoring process.
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4 IMPACT’s Representational Framework

In order to facilitate implementation of the split-confirmation technique, IMPACT
provides a supporting framework of representational and processing capabilities.
This section outlines these capabilities, while the next section details the algorithm
itself.

Serving as a foundation for IMPACT’s supporting framework of capabilities
is its use of the transition space representation to encode and reason about time,
events and causality {1, 2]. The Transition Space representation is designed to
be both computer-manipulable—consisting of assertions in a constrained form of
predicate logic—and human-understandable—being easily converted to and from
a simple, stylized English rendering of individual statements about circumstances
and events.

Figure 3 illustrates how the transition space representation is used to encode
information in IMPACT’s repository. The background assertions, event instances
and event patterns in the repository can be viewed as distributed along two dimen-
sions: (1) their time of occurrence (e.g., January 1, 1998), and (2) which particular
attributes of which particular objects they concern (e.g., the operational status of
a particular mainframe computer).

There are two varieties of background assertions: (1) facts, which hold at 1nd1-
vidual time points (e.g., “On January 1, 1998, the Corporate Headquarters main-
frame system is operational.”) and (2) changes, which hold across two time points
(e.g., “Between January 1, 1998 and January 2, 1998, the Corporate Headquar-
ters mainframe system ceases to be operational.”). Taken collectively, a particular
set of background assertions can be viewed as populating scattered points and
stretches of the two-dimensional diagram, but leaving large areas unspecified. For
these unspecified areas, we simply have no information concerning the status or
changing status of the indicated attributes of the indicated objects.

As described previously, in order to “fill” the unspecified areas of the conceptual
diagram, two commonly-used assumptions can be applied. The first is a persistence
assumption. This assumption states that whatever is true at a particular point in
time continues to be true at future time points, up to some point determined by
the particular version of the persistence assumption applied (e.g., continuing for 7
days, or, continuing indefinitely). The second is a closed-world assumption. This
assumption states that in the absence of explicit information that something is
true at a particular time point, that thing is assumed to be false. The persistence
assumption is depicted graphically by a rightward arrow in the diagram, while
the closed-world assumption is depicted graphically by a stretch of X’s where no
facts or changes appear. Applied together, the two assumptions have the effect
of specifying a status, one way or another, for each and every point in the two-
dimensional diagram.

Event instances can be viewed as larger rectangles in the two-dimensional space,
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Figure 3: A conceptual illustration of IMPACT’s repository, its contents, and
operations that are performed on these contents.

being organized collections of facts and changes concerning particular attributes of
particular objects and covering particular, consecutive intervals of time. Event pat-
terns, because they can contain variables in place of objects, can be viewed as even
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larger rectangles, extending over entire ranges of possible attribute-object combi-
nations and time points. Each event pattern can be transformed into an event
instance by replacing its variables with constants. To test whether a particular
instantiated version of an event pattern is consistent with the repository, one con-
ceptually constructs the corresponding event instance, then checks to see whether
the repository contains conflicting information at the same points and stretches
addressed by the event instance. Constraint propagation can then be employed
to simultaneously rule out many unsuitable values for all of the variables within
an event pattern, based on conflicts that appear with assertions in the repository.
This goes a long way toward determining which particular instantiated versions of
the event pattern are consistent with the repository.

Borrowing the notational language of Figure 3, Figure 4 illustrates how the
six types of events can be handled differentially by specifying a temporal dividing
point between the starting and ending time points for the event, such that the com-
puter participant must vouch for the occurrence of all activity either proceeding
or following, and possibly including, the temporal dividing point, and the human
participant must vouch for the occurrence of all remaining activity in the event.
The computer participant accomplishes its assigned duties by applying the persis-
tence and closed-world assumptions throughout its assigned segment of the event.
As described previously, the assumptions are not applied for reported events, are
applied from prior time points up through part or all of the event for planned,
consequent and inferred events, and are applied from subsequent time points back
through part of the event for enabling and antecedent events.

5 Split-Confirmation Algorithm and Example

Figures 5, 6, 7 and 8 present the split-confirmation technique’s event instantiation
algorithm and its subparts. The algorithms are structured in such a way as to
distinguish logical components that can be replaced by alternate methods. In the
implementation of these algorithms, it is possible to restructure them slightly for
increased efficiency. For example, if access time for the repository is a concern,
the algorithm for generating related assertions (Figure 7) can be extracted to
precede the second step in the instantiation algorithm (Figure 5), with additional
steps inserted to prune the lists of related assertions as variables are replaced
with constant values. Or, if access time for the repository is not a concern, but
temporary memory usage is, the algorithm for generating related assertions can be
merged with the first inner loop in the algorithm for completing the determination
of candidate variable values (Figure 8) in such a way as to permit immediate
disposal of generated assertions. ’ '
The algorithms in Figures 5, 6, 7 and 8 are expressed in pseudo-code, which
is further elaborated here by means of a skeleton example. For simplicity, the ex-

15




Reported Event

Planned Event

i

T
'

Inferred Event

Figure 4: Varied application of contextual assumptions in processing the six types

of events.

ample involves only transition space assertions describing changes, not assertions
describing instantaneous circumstances. To include such assertions describing in-
stantaneous circumstances follows in a straightforward manner from the discussion

presented here.



To Instantiate an Event Pattern:

* Flag event assertions requiring confirmation by computer, based !
i on human participant's classification of the event E

I » Loop 1: repeat:
® Determine candidate values for all variables such that all

flagged event assertions receive computer confirmation; if
failed, exit with failure

e If no remaining variables, exit returning the generated
event instance

¢ If instructed by human participant, replace a variable with a
specific value and proceed with the next iteration of loop 1

e Otherwise, exit returning the partially—instantiated event
pattern

Figure 5: Split-confirmation algorithm, part 1.

To Determine Candidate Variable Values:

e Using the repository, generate a set of assertions related to the
event assertions and describing pertinent circumstances during
the time period covered by the event pattern; if failed, exit with
failure

® Using the generated set of related assertions, complete the
determination of candidate values for all variables; if failed, exit
with failure; otherwise, exit returning the candidate variable
values

Figure 6: Split-conﬁrmation. algorithm, part 2.

The example concerns a manufacturing context, in which an event pattern con-
taining four assertions is to be instantiated. The event pattern describes a causal
expectation that when a machine stops being used for production of a particular
product, the production time for that product may subsequently increase. The
event pattern covers two intervals of time and has been mapped by the human
paticipant so that the referenced time points are the specific dates “1998 01/02”,
“1998 01/03” and “1998 01/04”.

The four assertions of the event pattern are as follows:

1. Between “1998 01/02” and “1998 01/03”, “a machine” CEASES TO BE
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To Generate Related Assertions:

¢ For each event assertion:

e Collect all repository assertions that match or conflict with
the event assertion

o If the flag value is set for the event assertion, collect
additional matching and conflicting assertions that arise
from applying a persistence assumption and a closed-world
assumption to the assertions in the repository

o If the event assertion has no variables and a conflicting
assertion has been generated, exit with failure

e Exit returning the generated assertions associated with each
event assertion

Figure 7: Split-confirmation algorithm, part 3.

To Complete the Determination of Candidate Variable Values:

* Loop 1: repeat:
& For each event assertion: !

e Using the generated set of related assertions, list
good or bad values for each variable

® For each variable:

o Combine the lists of good and bad values for that
variable; if no good values, exit with failure

e If any variable has a single good value, replace it with that
value and proceed with the next iteration of loop 1

e Otherwise, exit returning the value lists for all variables

Figure 8: Split-confirmation algorithm, part 4.

utilized for “a product”.

2. Between “1998 01/02” and “1998 01/03”, the production time for “a prod-
uct” DOES NOT CHANGE.

3. Between “1998 01/03” and “1998 01/04”, “a machine” DOES NOT BE-
COME utilized for “a product”.
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4.

Between “1998 01/03” and “1998 01/04”, the production time for “a prod-
uct” INCREASES.

In addition, we assume the presence of nine background assertions in the repos-
itory, as follows:

1.

Between “1998 01/01” and “1998 01/02”, “Machine #1” DOES NOT CEASE
TO BE utilized for “Product #1”.

Between “1998 01/01” and “1998 01/02”, “Machine #2” DOES NOT CEASE
TO BE utilized for “Product #2”.

Between “1998 01/01” and “1998 01/02”, “Machine #3” DOES NOT CEASE
TO BE utilized for “Product #1”.

Between “1998 01/01” and “1998 01/02”, “Machine #3" DOES NOT CEASE
TO BE utilized for “Product #2”.

Between “1998 01/01” and “1998 01/02”, the production time for “Product
#1” DOES NOT CHANGE.

Between “1998 01/01” and “1998 01/02”, the production time for “Product
#2” DOES NOT CHANGE.

Between “1998 01/02” and “1998 01/03”, “Machine #1” CEASES TO BE
utilized for “Product #1”.

Between “1998 01/02” and “1998 01/03", “Machine #3” CEASES TO BE
utilized for “Product #2".

Between “1998 01 /03" and “1998 01/04”, the production time for “Product
#1” INCREASES.

These background assertions provide a partial account of changes and non-
changes occurring over related intervals of time, with the first six background
assertions describing changes occurring prior to the period of time covered by the
event pattern, the next two background assertions describing changes occurring
during the first time interval of the event pattern, and the last assertion describing
a change occurring during the second time interval of the event pattern.

As a first case, suppose the human participant has classified the event pattern
as a “consequent” event—that is, the human participant is looking to see if the
causal progression specified by the event pattern might indeed be expected to occur
within the time period from “1998 01/02” to “1998 01/04”. The first interval of
a consequent event must be confirmed by the computer, and thus the computer
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begins the instantiation of the event pattern (Figure 5) by flagging event assertions
1 and 2, and leaving event assertions 3 and 4 unflagged.

Next, the computer enters the repeat loop of Figure 5. The first step of this
loop involves a computer determination of candidate values for variables in the
event pattern. The algorithm for accomplishing this is provided in Figure 6; how-
ever, other approaches such as one employing a generate-and-test procedure could
equivalently be utilized.

In the algorithm of Figure 6, the computer first determines likely circumstances
during the period of occurrence for the event pattern. The algorithm for accom-
plishing this is provided in Figure 7; however, other approaches such those in-
volving the application of heuristics, analogy-based reasoning, or forward-chaining
rules could equivalently be utilized.

The algorithm of Figure 7 iterates over the event assertions in the event pat-
tern. The discussion here focuses on event assertion 1, with the remaining event
assertions processed in a similar manner. The computer first collects all back-
ground assertions that match or conflict with this assertion. In this case, the
following assertions are collected: background assertions 7 and 8, because they
describe machines becoming no longer utilized for particular products, and back-
ground assertions 1 through 4, because they similarly describe machines utilized
for particular products, and their ending time point, “1998 01/02”, overlaps with
the beginning time point of event assertion 1.

For the second step of the iterative loop in Figure 7, the computer determines
that the flag for event assertion 1 is indeed set, and thus it applies a persistence as-
sumption and a closed-world assumption to the background assertions as a means
of extending its estimation of prevailing circumstances during the time period of
the event pattern. Ensuing circumstances for background assertions 1 and 4 are al-
ready specified in the form of background assertions 7 and 8; however, background
assertions 2 and 3 have no corresponding specifications of ensuing circumstances.
In this case, the application of the persistence and closed-world assumptions to
background assertions 2 and 3 produces two new assertions specifying that Ma-
chines 2 and 3, respectively, remain utilized for Products 2 and 1, respectively,
over the interval from “1998 01/02” to “1998 01/03".

For the final step of the iterative loop in Figure 7, the computer determines
that the event pattern does indeed have variables, and thus the appropriate action
is to continue with processing of the next event assertion. After processing the
remaining three event assertions, the computer returns the collected assertions to
the calling procedure. Continuing with the second step in Figure 6, the computer
must complete the determination of candidate values for variables. The algorithm
for accomplishing this is provided in Figure 8. This algorithm is a simplified algo-
rithm for constraint propagation; however, other approaches such those involving
the application of heuristics, analogy-based reasoning, forward-chaining rules, or
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use of another algorithm for constraint propagation (e.g., Waltz’s algorithm) could
equivalently be utilized.

The algorithm of Figure 8 consists of an iterative loop that begins by examining
each event assertion and listing, as appropriate, either a set of “good” values
(all others being bad) or a set of “bad” values (all others being good) for each
variable contained within that assertion. For the first event assertion, the presence
of background assertions 7 and 8 among the collected assertions for this event
assertion generate direct matches that generate the “good” values “Machine #1”
and “Machine #3” for the variable “a machine” and “Product #1” and “Product
#2” for “a product”. The closed-world and persistence assumptions effectively
specify that no other machines cease to be utilized for products over the concerned
interval, and thus all other possible values for these variables would be considered
“bad.” .

In all, the four event assertions yield the following lists of “good” and “bad”
variable values (“bad” values are listed for event assertions 3 and 4, because,
absent the constraint provided by the application of a persistence and closed-
world assumption, all values are “good” unless explicitly appearing in background
assertions that conflict with these event assertions):

1. (from event assertion 1)

e “a machine” has “good” values “Machine #1” and “Machine #3”
e “a product” has “good” values “Product #1” and “Product #2”

2. (from event assertion 2)
e “a product” has “good” values “Product #1” and “Product #2”
3. (from event assertion 3)

e “a machine” has no “bad” values (all other values are “good”)

e “a product” has no “bad” values (all other values are “good”)

4. (from event assertion 4)
e “a product” has no “bad” values (all other values are “good”)

Next, the algorithm of Figure 8 combines the “good” and “bad” lists for each
variable. Two “good” lists combine by set intersection to produce a new “good”
list. Two “bad” lists combine by set union to produce a new “bad” list. When
a “good” list and a “bad” list are combined, the contents of the “bad” list are
excluded from the “good” list by set difference, and the result is labeled a “good”
list.
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Considering the variable “a machine”, the combination process produces a
“good” list containing the values “Machine #1” and “Machine #3”. For the
variable “a product”, the this process produces a “good” list containing the values
“Product #1” and “Product #2”.

In the third step of the iterative loop in Figure 8, the computer examines the
“good” and “bad” lists for the variables to determine if any variable has only
a single “good” value listed. If so, the computer substitutes the value for the
variable and jumps to the top of the loop. In this case, neither variable has a single
“good” value, so the computer returns the value lists to the calling procedure, the
algorithm in Figure 6. This procedure also completes, returning the value lists to
the algorithm of Figure 5.

Continuing with the algorithm in Figure 5, the computer tests the event pattern
to determine if it has no remaining variables. In this case, the event pattern does
have variables, so the computer proceeds to check whether the human participant
wishes to replace a variable with a specific value. At this point, suppose the
human participant instructs the computer to replace “a machine” with “Machine
#3”. The computer does this and returns to the top of the loop in Figure 5, thus
proceeding with a new call to the subprocedure in Figure 6, which begins with a
call to the subprocedure in Figure 7.

This time, the gathering operation for the new event assertion 1 (with “Machine
#3” substituted for “a machine”) produces only three background assertions—3, 4
and 8—because only these specify utilization status for “Machine #3” either during
or overlapping the time interval of the event assertion. Applying the persistence
and closed-world assumptions to the repository, a further assertion is generated,
specifying that “Machine #3” continues to be utilized for “Product #1” over the
interval from “1998 01/02” to “1998 01/03”. Completing its processing of the new
first event assertion in the procedure in Figure 7, the computer determines that the
event assertion has remaining variables, thus the appropriate action is to continue
with processing of the new second event assertion. After processing the remaining
three new event assertions, the computer returns the generated, related assertions
to the procedure in Figure 6.

The second step of the algorithm in Figure 6 again calls the procedure in
Figure 8, which this time results in the following value lists for the single remaining
variable ”a product”:

1. (from the new event assertion 1)
e “a product” has a single “good” value “Product #2”
2. (from the new event assertion 2)

e “a product” has “good” values “Product #1” and “Product #2"
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3. (from the new event assertion 3)

e “a product” has no “bad” values (all other values are “good”)

4. (from the new event assertion 4)
e “a product” has no “bad” values (all other values are “good”)

Next, the algorithm of Figure 8 combines the “good” and “bad” lists for the
variable “a product”, resulting in a list of “good” values containing a single value
“Product #2”. This time, in the third step of the iterative loop, the computer
replaces “a product” with the value “Product #2” and continues with an addi-
tional iteration of the loop. Repeating the first step of the loop, it considers each
new event assertion in turn (also pruning the associated lists of related assertions
to consider only those assertions that relate to the now further-instantiated event
assertions), determining that each new event assertion contains no remaining vari-
ables and thus resulting in a return from the procedure in Figure 8 to the calling
procedure in Figure 6. This procedure then returns to the procedure in Figure
5. Finally, the second step of the iterative loop in the algorithm in Figure 5 de-
termines that there are no remaining variables and exits, returning the mapped
version of the original event pattern with “a machine” replaced by “Machine #3”
and “a product” replaced by.“Product #2”. In effect, through a collaboration of
computer and human, the event instantiation algorithm has generated a prediction
that the removal of “Machine #3” from utilization for “Product #2” may result
in increased production time for “Product #2”.

In contrast, it is also useful to consider how the event instantiation algorithm
will operate given alternate event classifications supplied by the human partici-
pant. If the human participant classifies the event pattern as “reported,” then
the persistence and closed-world assumptions are not applied during the gathering
step for any of the event assertions. This places less constraint on the range of
acceptable values for variables appearing within these assertions. In particular,
the computer will determine that “Machine #2” is also an acceptable value for “a
machine”, because it has been given no authority to assume that “Machine #2”
continues to be utilized for “Product #2” over the first time interval covered by
the event pattern, “1998 01/02” to “1998 01/03". Thus, the computer will present
to the human participant an expanded list of candidate variable values—Machines
1, 2 and 3 for “a machine” and Products 1 and 2 for “a product” —effectively defer-
ring to the human participant’s stronger knowledge in the context of this reported
event.

On the other hand, if the human participant classifies the event pattern as
“inferred,” then the persistence and closed-world assumptions are applied not only
when processing event assertions 1 and 2 (covering the interval from “1998 01/02”
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to “1998 01/03”), but also when processing event assertions 3 and 4 (covering the
interval from “1998 01/03” to “1998 01/04”). In this case, during the processing
of generating related assertions for event assertion 4, an additional assertion is
generated specifying that the production time for “Product #2” does not change
between “1998 01/03” and “1998 01/04”. This assertion in turn prevents “Product
#2” from being accepted as a “good” value for “a product” in event assertion 4,
thus resulting in complete instantiation of the event pattern by the computer as
it first replaces “a product” with “Product #1”, then replaces “a machine” with
“Machine #1”. In this case, the human has deferred to the computer’s stronger
knowledge in inferring whether or not an instance of the event pattern can be
substantiated as having occurred solely on the basis of what is specified in the
repository.

6 Discussion

The split confirmation technique goes a long way toward supporting interactive,
shared-initiative planning and monitoring, and in itself, is reasonably straight-
forward to implement. However, as with many research efforts, the ensuing de-
velopment and deployment stages of the effort can nevertheless hold relatively
significant difficulties. For IMPACT, one such difficulty lies in translating numer-
ous currently-used formats for specifying timestamped information into a common
format—here, stylized English—for entry into the system. Other hurdles are the
design and construction of powerful, easy-to-use environments for human-driven
negotiation of terminology for describing events, as well as specification of event
definitions and causal rules. Finally, careful consideration must be given to de-
termining the proper role for computer inference in the system, such that the
comptiter is usefully employed where applicable, yet doesn’t perform too much
behind the human user’s back or when incapable of reaching dependable conclu-
sions. Future plans call for increasing the interconnectivity of the IMPACT system
to accommodate new data formats, new types of network interaction, and richer
GUI-based interaction. :

Eventually, IMPACT or its underlying split-confirmation functionality could be
repackaged as a general-purpose software application akin to current spreadsheet
applications but dealing with circumstances and events rather than with num-
bers. Such an application might be targeted to contexts where continual change
necessitates the interleaving of plan construction, modification and tracking activ-
ities. Some examples are: resource allocation planning, organizational restructur-
ings, multiparty engineering or software design, logistics/transportation planning
and military operation planning. In addition, there are myriad situation-specific
project planning efforts within corporations and other organizations which could
be aided by the use of such a system.

24



References

(1] Borchardt, G. C., “Understanding Causal Descriptions of Physical Systems,”
Proc. AAAI Tenth National Conference on Artificial Intelligence, 1992, 2-8.

[2] Borchardt, G. C., Thinking between the Lines: Computers and the Compre-
hension of Causal Descriptions, MIT Press, 1994.

[3] Cohen, P., “Plan Steering and Mixed-Initiative Planning,” in Tate, A.
(ed.), Advanced Planning Technology: Technological Achievements of the
ARPA/Rome Laboratory Planning Initiative, AAAI Press, 1996.

[4] Cook, T. M. and Russell, R. A., Introduction to Management Science, Prentice
Hall, 1993.

[5] Date, C. J., Database Systems, Sixth Edition, Addison-Wesley, 1995.

[6] Ferguson, G., Allen, J. and Miller, B., “TRAINS-95: Towards a Mixed-
Initiative Planning Assistant,” in Drabble, B. (ed.), Proc. Third International
Conference on Artificial Intelligence Planning Systems, AAAI Press, 1996.

[7] Georgeff, M. P. “Reasoning About Plans and Actions,” in Shrobe, H. E. (ed.),
Ezxploring Artificial Intelligence: Survey Talks from the National Conferences
on Artificial Intelligence, Morgan Kaufmann, 1988, 173-196.

[8] Lowery, G., Managing Projects with Microsoft Project 4.0 for Windows and
Macintosh, Van Nostrand Reinhold, 1994.

[9] Microsoft Corporation, User’s Guide: Microsoft Excel, Version 5.0, 1994.

[10] Reiter, R., “Nonmonotonic Reasoning,” in Shrobe, H. E. (ed.), Ezploring Ar-
tificial Intelligence: Survey Talks from the National Conferences on Artificial
Intelligence, Morgan Kaufmann, 1988, 439-482.

[11] Shrobe, H. E. (ed.), Ezploring Artificial Intelligence: Survey Talks from the
National Conferences on Artificial Intelligence, Morgan Kaufmann, 1988.

[12] Tate, A., Drabble, B. and Dalton, J., “O-Plan: A Knowledge-Based Planner
and Its Application to Logistics,” in Tate, A. (ed.), Advanced Planning Tech-
nology: Technological Achievements of the ARPA/Rome Laboratory Planning
Initiative, AAAI Press, 1996.

[13] Winston, P. H., Artificial Intelligence, Third Edition, Addison-Wesley, 1992.

25



MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.




